Semi-supervised Affinity Propagation Based on Density Peaks

نویسندگان

  • Limin Wang
  • Xing Tao
  • Xuming Han
  • Jialing Han
  • Ying Liu
  • Guangyu Mu
  • Zhengdong Lu
چکیده

Original scientific paper In view of the unsatisfying clustering effect of affinity propagation (AP) clustering algorithm when dealing with data sets of complex structures, a semi-supervised affinity propagation clustering algorithm based on density peaks (SAP-DP) was proposed in this paper. The algorithm uses a new algorithm of density peaks (DP) which has the advantage of the manifold clustering with the idea of semi-supervised, builds pairwise constraints to adjust the similarity matrix, and then executes the AP clustering. The results of the simulation experiments validated that the proposed algorithm has better clustering performance compared with conventional AP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey On Seeds Affinity Propagation

Affinity propagation (AP) is a clustering method that can find data centers or clusters by sending messages between pairs of data points. Seed Affinity Propagation is a novel semisupervised text clustering algorithm which is based on AP. AP algorithm couldn’t cope up with part known data direct. Therefore, focusing on this issue a semi-supervised scheme called incremental affinity propagation c...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Adaptive Semi-supervised Affinity Propagation Clustering Algorithm Based on Structural Similarity

Original scientific paper In view of the unsatisfying clustering effect of affinity propagation (AP) clustering algorithm when dealing with data sets of complex structures, an adaptive semi-supervised affinity propagation clustering algorithm based on structural similarity (SAAP-SS) is proposed in this paper. First, a novel structural similarity is proposed by solving a non-linear, low-rank rep...

متن کامل

Semi-Supervised Affinity Propagation with Instance-Level Constraints

Recently, affinity propagation (AP) was introduced as an unsupervised learning algorithm for exemplar based clustering. Here we extend the AP model to account for semisupervised clustering. AP, which is formulated as inference in a factor-graph, can be naturally extended to account for ‘instancelevel’ constraints: pairs of data points that cannot belong to the same cluster (cannotlink), or must...

متن کامل

Supervised and Semisupervised Clustering Based on Feature Selection Algorithm Process

In clustering process, semi-supervised learning is a tutorial of contrivance learning methods that make usage of both labeled and unlabeled data for training characteristically a trifling quantity of labeled data with a great quantity of unlabeled data. Semi-supervised learning cascades in the middle of unsupervised learning (without any labeled training data) and supervised learning (with comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016